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Spin-wave theory of the zero-point energy of solitons in 
one-dimensional magnets 
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Department of Physics, University of Liverpool, Liverpool L69 3BX, UK 

Received 12 December 1988, in final form 13 March 1989 

Abstract. It is known that quantum fluctuations significantly modify the energy required to 
produce a mobile domain wall, or soliton, on a chain of exchange-coupled magnetic atoms 
subject to an anisotropy field or magnetic field. We show here that spin-wave theory applied 
about the classical soliton solution to the sine-Gordon equation can be adapted to calculate 
these zero-point energy effects by matrix diagonalisation. The results for solitions on fer- 
romagnetically coupled chains are qualitatively similar to those obtained by other techniques. 
In antiferromagnets, however, the quantum fluctuations appear to produce, under certain 
conditions, a negative soliton creation energy, i.e. a soliton-containing ground state. This 
situation is a result of the non-linear response of the zero-point energy to small changes in 
the effective anisotropy of the one-dimensional antiferromagnet. 

1. Introduction 

Quasi-one-dimensional magnets are of interest since they exhibit anomalously large 
magnetic fluctuations. While the small linear oscillations or spin waves, which provide 
a good description of the low-temperature properties, are well understood, the math- 
ematical description of the non-linear mobile domain walls or solitons continues to 
arouse interest. The sine-Gordon equation 

a2q/az2  - ( i / 2 ) ( a 2 q / a t 2 )  = m2 sin 9, (1) 
which is obtained by making classical and continuum approximations to the magnetic 
Hamiltonian, provides a good starting point for the description of the non-linear exci- 
tations but the description of effects such as discreteness [l], soliton-soliton and soliton- 
magnon interactions [2-41, and coupling to the lattice [5]  requires refinements to the 
basic theory. 

Solitons (or at least non-linear fluctuations) have been observed by a variety of 
experimental techniques, including neutron scattering [6] and Mossbauer spectroscopy 
[7], via their effect on the spin-correlation function. They also contribute to the thermo- 
dynamics of the system [3]. The effect of solitons is particularly interesting when static 
magnetic fields are applied and it is possible to discuss the spin-flop phase transition in 
quasi-one-dimensional uniaxial antiferromagnets in terms of a soliton creation energy 
which is gradually reduced to zero by the applied field [8]. 

One of the most important refinements to the classical theory concerns the correction 
to the soliton creation energy produced by quantum fluctuations. These fluctuations 
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account qualitatively for the observed soliton energies in a variety of systems [9-111 
which are systematically lower than those predicted from (1). The energy correction has 
been calculated using a variety of approximate techniques including semi-classical field 
theories [ 12-15], Bethe ansatz [ 161, Holstein-Primakoff formalism [ 171, variational 
methods [18] and numerical calculations [19]. Typically the agreement between theory 
and experiment is improved by these theories but is not perfect, especially for specific 
heat data [20,21]. 

In this paper, we consider the application of a simple generalisation of spin-wave 
theory about the equilibrium configuration of spins on a stationary soliton to derive 
values for the quantum correction to the soliton creation energy. The spin-wave theory 
is flexible in that it can easily include experimentally relevant variations in the standard 
Hamiltonian, such as dipole-dipole interactions instead of single-ion anisotropy. The 
theory, which includes both in-plane and out-of-plane fluctuations, is expected to give 
a zero-point energy accurate to within a few per cent, even for S = 4, since this is the 
error associated with the ID antiferromagnet, which is the worst case for the spin- 
wave approximation. In general the results must be obtained numerically, by matrix 
diagonalisation, but this need not be considered a serious problem as numerical simu- 
lations have often played a significant role in soliton physics in the past [19,21,22]. In 
real materials, inter-chain interactions often play a crucial role and these could be 
modelled using the spin-wave technique, but to introduce the method we confine our- 
selves here to purely one-dimensional systems. 

The starting point for much of the work on magnetic solitons is [23,24] 

which describes the classical energy of a spin system with SI = (S,x, Sly, S,,), isotropic 
exchange coupling J ,  easy-axis anisotropy K 1  > 0, easy-plane anisotropy K2 > 0 and 
magnetic field B .  K2 tends to force the spins into the x-z plane and K1 and B tend to have 
the effect of localising any twists of the spins within this plane. Where K2 is sufficiently 
large for all the spins to lie in the x-z plane, the classical energy can be expressed, for a 
magnetic field along the z axis, as 

E = SE C. [-~JCOS(O, - e l + l )  - K~ cos2 e,] - IC g p s ,  COS e, (3) 
I I 

where el is the angle between a given spin and the z axis, and the spins have classical 
length S,  = [ S ( S  + l)]”’. The stable static configuration of spins subject to (1) can be 
found by setting d E ld  e, = 0: 

2JS,[sin(O1 - + sin(8, - e,- ,)] + KIS, sin(28,) + gPB sin 8, = 0. (4) 

Application of the continuum approximation, in which the angles between adjacent 
spins become small gives, for B = 0, 

d28, /dj2 = (m2/2) sin(28,) ( 5 )  

where m2 is Kl/J. This is essentially equation (1) without the time variable. A similar 
equation is obtained for B # 0, K1 = 0. Although the soliton has interesting dynamics, 
this is not discussed below, i.e. we are concerned here only with the minimum energy 
required to create a soliton. 
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The solution with just one n twist is often of particular importance experimentally 
since all the spins are reversed after the soliton has passed, and so the spin correlation 
functions are strongly affected. This n soliton is a solution of ( 5 )  with 

e ( j )  = 2 tan-l[exp(mj)]. (6) 
The energy is Es = 4S(S + 1)(KlJ)”2 and the width is about (2J/Kl)’/2 spins. There is a 
mathematically similar 2x soliton for B # 0, K1 = 0. 

The soliton energy is sometimes expressed as 4S2(KlJ)1’2 [8], where there is an 
implicit assumption that the soliton has zero-point energy 4S(KlJ)’i2 less than the 
untwisted magnetic chain. The situation is directly analogous to that for the simple 
ferromagnetic chain, for which the ground-state energy -2JS2 per spin is obtained by 
addition of zero-point energy 2JS to the classical energy -2JS(S + 1) [25]. The remain- 
der of this paper demonstrates that this implicit assumption is not always valid, especially 
for antiferromagnetic solitons. 

2. Spin-wave theory of twisted chains 

Although it has no immediate physical significance, the case of the closed chain (ring) 
with a number T of 2n  twists distributed evenly over all chain links provides a good 
introduction to the application to solitons and some exact results can be obtained. This 
configuration is only stable if wA = 2K1S = 0, = gPB = 0; we take f i  = 1 throughout. 
It can be shown by derivation of the classical normal mode frequencies that the uniformly 
twisted chain requires up > wE( 1 - cos t) to be stable against fluctuations out of the x- 
z plane. Here wp = 2K2S, w E  = 4JS and t = tj = e, - ej.+ = 2nT/Nis the twist per spin. 
A similar instability may occur in real solitions, particularly in applied fields, where 
the angle between adjacent spins can become large [26]. Transformation of (1) to a 
coordinate system in which each spin lies, at equilibrium, along its own local z axis [27] 
leads to a Hamiltonian with quadratic terms: 

xj = -2J[c0s2 sj(Sj,ySj+l,y + S j , x S j + l . x )  + sin2 S j ( S j . y S j + l , y  - Sj,xSj+l.x) 

+ cost, Sj,zSj+l,zI + K2Sfy (7) 
wheresj = tj/2, X = XjXjand terms in Sj,xSj+l.z - Sj,zSj+l,xr whichvanish at equilibrium, 
have been omitted. This can be expressed using the conventional spin deviation creation 
and annihilation operators defined by 

(8) S ,  = s - a t a .  s,,, = (S/2)1’2(uj + a i )  = i ( ~ / 2 ) l / ~ ( a j  - a i )  1.2 1 1  

a f j  = c , (a ja j  + i) + (C2/2)(UjU] + U j U j )  + (c3/2)(ajaj+l + a j a j + l )  

as 

+ (c,/2)(a]a;+l + a ja j i l )  + c5(aj+laj+l + &) 

+ (c6/2)(u;+1u~+1 + aj+laj+l)  (9) 
where 

c1 = (WE cost + wp)/2 

~4 = W E  sin2 s 

c2 = -w,/2 

c5 = (WE cos t)/2 

c3 = -WE cos2 s 
(10) 

c6 = 0. 

Since the system has translational symmetry, it is appropriate to transform to momentum 
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space using a i  = E j a i  exp(-ikrj), where -n/b < k < n / b  and b is the lattice constant. 
This gives 

where Y k  = cos k .  Now [ Y e ,  all = w k a : ,  where = uka: + 0ka-k is a creation oper- 
ator for the coupled system. Equating terms in a: and a-k gives the frequencies as 
eigenvalues of the commutator matrix 

- c2  - Y k C 4  - ? c l  + Y k C 3  + c 5  

c 2  + Y k C 4  + c6 - c l  - Y k C 3  - c 5  

Therefore 
w i  = W E  cos t(1 yk)[cL),G(cos t - Y k )  + u p ] .  (13) 

It can be seen that the correct dispersion relations for the ferromagnet (oE > 0) and 
antiferromagnet (oE < 0) with zero anisotropy are obtained by putting cop = 0 with 
t = 0 and t = n, respectively. 

To a first approximation the requirement that o: > 0 reproduces the stability con- 
dition op > oE( 1 - cos t ) .  However, since ykcan takeonly discretevaluescorresponding 
to k = 2nZ/N, 1 = 1 ,  . . . , N ,  the exact result is more complicated. Thus for oE > 0 the 
chain with up = 0 is just stable for t = 2 n / N ,  i.e. for a single 2n twist, since the op- 
containing term of (13) becomes negative only where 1 - Y k  = 0. The antiferromagnet 
is different since the instability associated with out-of-plane displacements appears at 
k = n, Y k  = - 1 .  Here there is no other term in the product (13) which vanishes; hence, 
if op = 0, the twisted chain is unstable for any T # 0. 

The zero-point energy of the twisted chain can be calculated by summing 0 k / 2  in the 
standard way. In general, this will be different from the zero-point energy of the 
untwisted chain by an amount which is the quantum correction to the twist creation 
energy. 

In the limit of large N ,  (13) can be integrated (as-long as 0 2  > 0). The zero-point 
energy becomes 

i.e. E, = wE(l - t2/4)Z, where 

and 2 w ;  = w p / l w E /  - t 2 / 2 .  It can be seen that a small twist angle t affects E, in two 
ways: by scaling the entire dispersion curve by 1 - t2/4 and by reducing the effective 
easy-plane anisotropy. For oE > 0, I reduces to 

(1 + w p, -112 2 
ZFM = -(1 + U;) (1 - x2)l12 dx  (16) 

d T  

while, for oE < 0, 

Both are standard integrals. 
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Figure 1.Zero-point energies per spin, in units of 
wg/2 for magnetic chains as a function of easy- 
plane anisotropy wp/lwEl:  -, w g  < 0; ---, 
wg > 0. 

Figure 2. Ro, the ratio of the exact zero-point 
energy to that required to produce a twist creation 
energy proportional to Sz, as a function of easy- 
plane anisotropy for wE < 0 (-) and W E  > 0 
(---). 

In considering the quantum correction to the twist energy E,, it is convenient to 
define RQ by 

E ,  = E,[S(S 1) - RQS] (18) 

where E,S(S + 1) = E,,, the classical twist creation energy. RQ is therefore the ratio of 
the quantum correction to the twist energy to that quantum correction which would be 
required to give a twist energy proportional to S 2 .  If RQ > S + 1, then the total twist 
creation is negative, i.e. the ground state of the system will contain twists. There will be 
an energy barrier to twist formation since both the twisted and the untwisted states are 
stable, but we do not discuss the kinetics of the twisting process. 

For small t the classical twist creation energy per atom is, from (3), 

E,, = o E ( S  + l)t2/4. 

RQ = - ( 4 / o ~ t ~ ) [ E ~ ( t )  - E Q ( ~ ) ]  LI - ( 4 / o ~ f ~ ) t ~  dEQ/d(t2) 

RQ = I + dI/dw;. 

R ~ ( w ~  > 0) = ( ~ / n ) { x - ~ [ x ( ~  - x2)1/2 + sin-' x ]  + sin-l x} 

(19) 

(20) 

(21) 

(22) 

Therefore 

but EQ = uE(1 - ?/4)I; differentiating this gives 

Application of this result to (16) and (17) gives 

where x = (1 + o 6) -U2 and 

RQ(uE < 0) = (l/n){y-*[y(l + y2)1/2 + sinh-' y ]  + sinh-' y} (23) 

where y = o ;-'Iz. As is often found in spin-wave theory, the trigonometric functions 
found for uE > 0 are replaced by hyperbolic functions for uE < 0. The zero-point 
energies for typical values of up and t,  for both signs of uE are shown in figure 1. The 
derived RQ for the creation of a single twist are shown in figure 2. 
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It can be seen that RQ diverges for large cop since for wp %- wE the dispersion relation 
reduces to 

wk = ( 2 ~ ~ 0 . 1 ,  cos t)'I2 sin(k/2). 

W P / W E  3 JTys + 1)2/2. 

(24) 

(25 1 
The quantum correction becomes greater than the classical energy for 

For the ferromagnet, R, + 1 as wp + 0. For the antiferromagnet the situation is quite 
different, the low w expansion of RQ is 

R Q ( w ;  + 0) = (In 2)/n - (In w;) /~JG.  (26) 
This result means that the antiferromagnetic ring may become unstable with respect to 
twist formation for certain critical ring sizes which allow twists to be stable, for small w,. 
The critical ring sizes are about 60 for S = 8, about 300 for S = 1 and increase by a factor 
of about 5 for each further half-spin. 

Strictly speaking the S = 4 result cannot be correct since single-ion anisotropy cannot 
affect spins S = 4. However, the only effect of replacing single-ion anisotropy by an 
exchange anisotropy SlzSl+ l , z  of a sign which also creates an easy plane is to multiply wp 
by Y k  in expressions such as (13). This only slightly modifies the rest of the derivation, 
which remains qualitatively correct for all wp and exactly correct in the low-w, limit. 
Exchange anisotropy is possible for all values of S. 

It can be seen from figure 1 that, if the energy is decreased by the formation of a 
single twist, then it is likely that the antiferromagnetic chain will lose even more energy 
by gaining second and subsequent twists since the gradient of the zero-point energy is 
increased as the effective anisotropy is decreased. It seems reasonable to suppose that 
the twisting process, once started, will continue until wp is exactly balanced by twists, 
i.e. 0; = 0. This gives the following picture of the ground state of the antiferromagnetic 
ring as up is reduced from a large value, say w p  = wE. Initially RQ = 1 and so the twist 
creation energy is positive. As wp is reduced, a critical value, RQ > S + 1, is reached at 
which the system loses more quantum fluctuation energy than it gains classical energy 
by twisting to wb = 0. This critical up represents the most twisted state since, as wp is 
further reduced, the t2 necessary to produce 0; = 0 is decreased and the chain gradually 
unravels, becoming untwisted again at up = 0. 

In summary, an isotropically coupled ring of spins becomes unstable with respect to 
twisting for large planar anisotropy whatever the sign of wE. Only the antiferromagnetic 
ring becomes unstable for small up. The peculiar behaviour of the antiferromagnet is a 
consequence of the non-linear behaviour of the dispersion curve near to k = JT. We show 
below that similar instability at a low anisotropy may occur in antiferromagnetic soliton 
systems. This may have observable consequences for real materials. 

3. Application to solitons 

The application to solitons follows the same lines as above except that, since there is 
now no translational symmetry, the commutator matrix must be solved numerically in 
real space and it is not possible to obtain closed-form expressions for the soliton creation 
energy. Although it would be possible to use the continuum expression (6), the effects 
of discreteness can easily be included in the calculation. Thus, equation (4) allows 
to be calculated given Oj and Oj- '  and this remains true as long as the Hamiltonian is 
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restricted to nearest-neighbour interactions. Hence, if the angle between two adjacent 
spins is chosen, the angles of all other spins can be calculated. The angle can then be 
varied until the energy of the system is at a local minimum. In the study of solitons it is 
convenient to choose two atoms at the centre of a finite length of chain such that their 
average angle with respect to the applied field or easy axis is half the total twist angle of 
the required soliton. Thus for a n soliton in a ferromagnetic chain the central atoms are 
chosen to straddle the angle 8 = z / 2 .  It is not necessary to apply constraints to the end 
atoms. 

There are always questions concerning the validity of spin-wave theories in finite 
systems but we have shown that the finite-chain spin-wave theory can be applied with 
some success to the spin reduction in doped quasi-one-dimensional magnets [28] and 
this gives us increased confidence here. The zero-point energy is also likely to be more 
accurate than the zero-point spin reduction, which diverges in one dimension when the 
anisotropy vanishes. It is notable that spin-wave theory gives exactly correct values for 
the zero-point energy of the two- and four-membered antiferromagnetic rings, even for 
s=;. 

It is essential that boundary effects are eliminated from the calculations of the 
changes due to the presence of the soliton, by taking chains of length much larger than 
the soliton width. In practice this is not usually a severe constraint since zero-point 
energies obtained by spin-wave theory are, at worst, in the antiferromagnet accurate to 
only about 2% and it is easy to make boundary effects insignificant at this level. 

The commutator matrix for the soliton problem is obtained by considering the 
commutator of X with the creation and annihilation operators at each of the N sites. 
Thus, 

Two subscripts are now necessary on the coefficients c since O j  and hence tj and si = t j /2 
depend onj. The uniaxial anisotropy and applied field modifies the coefficients given in 
(10) to produce 

c l j  = [ w E  COS t j  + wA(3 cos2 ej - 1) + w P ] / 2  + oB COS ej c4j = w E  sin . 2  si 

~ 2 ,  = - ( @ A  sin2 O j  + 0,)/2 csj = ( W E  cos t j ) / 2  (28) 

c3j = -WE cos2 sj c6j = 0 

where oB = gPB and we consider here only fields along the z axis. Writing [ X ,  a'] = 

matrix in which each row contains six non-zero elements placed around the leading 
diagonal. Thus the rows which arise from a i  and a, are 

ma', where a' = u l a ]  + u2al  + u 3 4  + . . .  and equating terms in a ] ,  a l ,  . . .  gives a 

. . .  . . .  . . . . . .  . . .  . . . . . .  

' * (29) 
[;; 0 0- C3.j-112 -C4,,-1/2 dj -c2,j c3.j/2 -c43j/2 0 

c4,j-l/2 -~3 . j -1 /2  c2.j -dj cd3j/2 - ~ 3 , j / 2  0 . . .  
. . . . . . . . .  . . .  . . . . . .  . . .  . . . . . .  . . .  

where dj  = + cs , j - l  is the diagonal element. The eigenvalues of the matrix occur in 
pairs related by a change in sign, which correspond to creation and annihilation operators 
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Figure 3. Representations of 2n ferromagnetic, n ferromagnetic and n antiferromagnetic 
solitons used in the numerical calculations. All the spins lie in the plane perpendicular to the 
chain axis. 

for the coupled system. As usual the zero-point energy is half the sum of the positive 
eigenvalues. 

4. Results 

The above method has been applied to three simple soliton systems: the 276 soliton in an 
easy-plane ferromagnet, the ‘2n ferromagnetic’ soliton, which has a finite length only in 
applied field; the 3t soliton of the planar ferromagnet with easy-axis anisotropy, the ‘n 
ferromagnetic’ soliton, which is stable only in zero applied field; and the n soliton in the 
easy-axis antiferromagnet, the ‘x antiferromagnetic’ soliton, which is considered here 
only in zero applied field. Although the case of the easy-axis antiferromagnet in applied 
field is particularly interesting, especially in the region of the spin-flop transition, this 
particular system is dominated by intra-chain effects which cause soliton pairing [29] 
and will be considered separately in a later work. 

Some typical solitons used in the calculations, generated by the numerical method 
described above, are drawn in figure 3 .  

To obtain a good understanding of the changes associated with soliton formation, it 
is useful to consider the changes in the eigenvalues and eigenvectors of matrix (29) as a 
function of wavevector k rather than simply discussing integrated quantities such as R,. 
Even where a soliton is present, k can be defined in terms of the asymptotic behaviour 
of the spin wave far away from the soliton by making k the subject of the dispersion 
relation for the unperturbed chain, k = k (w) .  The construction of our matrix problem 
results in a one-to-one correspondence between the eigenvalues of the chains with and 
without solitons. Each excitation with energy greater than that of the lowest frequency 
of the unperturbed chain, w > wo = w(k = 0 ) ,  can be associated through k with a 
wavelength A ,  and the change in A on soliton formation can be used to define a ‘phase 
shift’ due to the soliton. Phase shifts have played an important role in the theory of 
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solitons [15,30] since they can be related to the correlation functions and hence to 
thermodynamic properties. 

The free ends of magnetic chains are associated with particular values for the phase, 
but these are relatively easy to include in the calculation. Thus for a ferromagnetic chain 
with op < oE the excitations take the form of (real) standing waves with coefficients 
sin(kx + rp), where x is the position along the chain and rp represents the phase. For a 
chain with atoms lying at x = 1, . . . , x = N, rp is determined by the condition that there 
are anti-nodes at x = 4 and x = N + &. For the antiferromagnet the end effects are more 
complicated but, for wp = 0, they can be eliminated from the calculations on chains with 
even numbers of atoms since the phase shifts at the two ends cancel. This leads to 
wavelengths for the excitations of the chains without solitons which are simple fractions 
of N in both antiferromagnets and ferromagnets. The expression for the phase shift 6 is 

MA12 = N + 6A/2n i.e. 6 = n M  - kN 

where M is the number of nodes in the eigenvector. Typically the phase shifts are 
different for even and odd modes, denoted 6' and 6-. 

Bound states, with U < wo, decay exponentially and cannot be associated with a 
phase shift. The number of bound states associated with soliton formation depends on 
the type of soliton but there is always one bound state with an energy which is very small 
and tends to zero as the chain length increases. This mode corresponds to propagation 
of the soliton along the chain, a zero-energy process in the absence of discreteness and 
end effects. 

The antiferromagnetic chain with uniaxial anisotropy has two extra bound states, 
independent of the existence of a soliton, which are associated with the chain ends and 
decay exponentially into the chain. Analysis of the form of the matrix at chain ends 
shows that these states have energy given by w2 oA(wE + wA) compared with LO; = 
0*(2WE + "4). 

4.1. The 2x ferromagnetic soliton 

Quantum effects in the 2n ferromagnetic soliton system have been analysed in some 
detail using a semi-classical continuum approximation [15] and it is possible to compare 
those results with the results obtained by the present method. For the 2 n  ferromagnetic 
soliton there is a second bound state at an energy w = w o ( l  - 8wi/9w$). Our cal- 
culations qualitatively reproduce the results, but it is not possible to test, for instance, 
the factor 8 since the bound-state energy converges rather slowly with increasing chain 
length. This is the only example in our calculations for which the finite chain length is a 
limitation. The bound-state energy is never less than about 0 . 9 ~ ~  as this soliton becomes 
unstable for w p / u B  < 3. This feature is reproduced well in our calculations. 

Phase shifts for chains with wp/wB = 5 are plotted as a function of q = k ( ~ ~ / 2 w ~ ) l ' ~  
in figure 4 which may be directly compared with figure 1 of [30]. The close similarity of 
the figures is good evidence of the reliability of our calculations. A plot of the phase shift 
over the whole of the interval 0 < k < K shows that the shift does not decay to zero for 
large q but drops to a minimum proportional to w ~ 2 / u E  near to k = n/2 .  There is a 
second maximum in the phase shift near to k = K; this feature is shown in figure 5 for 
two applied fields. It can be seen that the region over which the odd- and even-mode 
phase shifts are split decreases in size as the field decreases, i.e. as the soliton gets larger. 
It is perhaps simpler to present the information of figure 5 as a plot of the difference in 
energy of the normal modes produced on soliton formation; this is done in figure 6. The 
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Figure 4. Phase shift 6 ( 4 )  for a magnon of 
wavevector 4 in the presence of a static 2n ferro- 
magnetic soliton for o ~ / Q ) ~  = 5 (curve A ,  6+;  
curve B , a-). 

Figure 5. Phase shifts 6 ( k )  for 2n ferromagnetic 
solitons with wP/wB = 5 :  curve A, wB = 0.020,; 
curve B, w B  = 0.0050,. 

1 
i 

1 
1 ' 1 ' 1 ' 1 ' 1  

0 0 . 4  0 8  

k / n  
Figure 6. Energy shifts A E ( k )  for the solitons in 
figure 5. The energy differences are normalised 
to the average value which woud be required to 
produce R, = 1. 

I I I I 

0 0 8  1 6  

W P  

Figure7. R, as a function of easy-plane anisotropy 
for the 2n ferromagnetic soliton for an applied 
field w B  = 0.0050,. 

energy difference has been divided by the average energy per mode which would be 
required to produce RQ = 1, to make the results independent of chain length. RQ is the 
average of the energy difference curve. 

It can be seen that the energy difference curve is nearly a straight line through a point 
k = n/2, AE = 0.75, except in the regions for which the even and odd modes are split. 

The variation is RQ with cop at constant cog for the 2n ferromagnetic soliton, is shown 
in figure 7. RQ tends to about 0.75 as up, + 0 and is only weakly dependent on small 
cop. This value is different from that found in [15] since there the soliton energy 
is expressed as Es [ S ,  - f + O(l/S,)](S + l), i.e. R, = S, - 4 + O(l/S,) - S = 1 + 
O( l/SJ = 1 to order 1. We believe that our result is more accurate since it includes the 
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Figure 8. Phase shifts S(k)  for a ~d ferromagnetic 
soliton with wA = O.OlwE, wp = 0. 
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Figure 9. Energy shifts, as in figure 6 ,  for the r7d 
ferromagnetic soliton in figure 8. 

influence of the discrete lattice, and also because spin-wave theory is intrinsically rather 
accurate when used to estimate first-order quantities such as RQ. For increasing up the 
behaviour is qualitatively similar to that of the twisted ferromagnetic chain. 

4.2. The n ferromagnetic soliton 

The n ferromagnetic soliton is stable for all values of up. There is only one true bound 
state, with w = 0, but a mode with k = 0 (i.e. a 'nearly' bound state) and a phase shift 
of exactly n remains after soliton formation. The phase shifts for the other modes, both 
even and odd, tend t o n  as k +  0. 

Phase shifts and energy differences are plotted as a function of k in figure 8 and figure 
9 respectively. The energy difference curve is shifted systematically upwards compared 
with that of the 2n ferromagnetic soliton, which gives rise to a larger RQ ( ~ 1 . 2 5 )  for 
small wp. RQ(mp) is plotted for the n ferromagnetic solition and the n antiferromagnetic 
soliton, which both have classical energy 4S:(JK)"2, in figure 10. RQ for the n ferro- 
magnetic soliton rises continuously, becoming greater than 1.5 for up > 0 .30~ .  Beyond 
this point the S = t system would therefore become unstable with respect to soliton 
formation. 

4.3. The n antiferromagnetic soliton 
The n antiferromagnetic soliton in zero field exhibits the most complicated behaviour. 
It is necessary to take rather long chains so that the bound states associated with the 
chain ends are unaffected by soliton formation. For wp = 0 there are two soliton bound 
states, each with w = 0. The energy of the mode which is not a propagation mode 
increases as ( ~ w ~ w , ) ' ' ~ .  This bound-state energy always lies below the energy for k = n 
but it may lie above the energy of unbound states with k =  0, for which w2 = 
w,(2wE + wA + wp). Thus the bound state associated with the soliton can have an 
energy greater than some of the unbound states. 

The phase shifts and RQ-values are strongly dependent on both wA and wp where 
these quantities are both small. Thus, figure 10 is drawn for a particular value wA = 
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Figure 10. R, as a function of easy-plane ani- 
sotropy for the nsoliton on a ferromagnetic chain 
(-) and an antiferromagnetic chain (---) with 
easy-axis anisotropy coA = 0.010~. 
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Figure 11. Phase shifts for n antiferromagnetic 
solitons with oA = 0.010~ (curves A) and oA = 
0 . 0 4 ~ ~  (curves B). 
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Figure 12. Energy shifts, as in figure 6, for the n 
antiferromagnetic soliton in figure 11. 

0 . 0 4 ~ ~ .  In general, discussion for up > 0 is complicated because the dispersion curve 
is no longer symmetric about n/2 and because of rather complicated end effects. We 
therefore confine our discussion to up = 0. 

Plots of phase shifts and energy differences for wp = 0 are shown in figure 11 and 
figure 12 for two values of wA. It can be seen that the phase shifts for this soliton are not 
strikingly different from those discussed previously, but the qualitatively different nature 
of the dispersion curve leads to much larger energy shifts. RQ (plotted in figure 10) 
increases, probably logarithmically as wA decreases. We find, for instance, that RQ > 3.5 
for wA/wE = 0.002, this value being relevant to the S = P chain. We therfore conclude 
that the antiferromagnetic chain with less than a critical amount of uniaxial anisotropy 
will be unstable to soliton formation unless there is a stabilising planar anisotropy field. 
This result is qualitatively identical with that found for the twisted antiferromagnetic 
chain. 
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In contradiction to the above conclusion, real antiferromagnets with small uniaxial 
anisotropy are known. We believe that the most likely resolution of this difficulty is that 
quantum fluctuations are suppressed by inter-chain interactions in two ways. Most 
simply the high Ro is due to non-linear response of the dispersion curve to small changes 
in effective anisotropy near to k = n. As the dimensionality increases, the importance 
of such extreme k is reduced. Interactions between antiferromagnetic chains will also 
produce a staggered field, which causes pairing of n solitons. The quantum fluctuations 
of the paired system may be different from those of the single soliton. 

In general terms the conclusion that the soliton creation energy must be strongly 
dependent on inter-chain interactions is not surprising since it is these interactions which 
cause the magnetic ordering which would otherwise be destroyed by fluctuations. The 
divergence of R, may in this sense be compared with the similar logarithimic divergence 
of the spin reduction as wp -+ 0. The spin reduction is known to be sharply reduced by 
even weak three-dimensional interactions. 

5. Conclusions 

We have shown that spin-wave theory is a versatile method for calculating the static 
properties of solitons on magnetic chains. Our results for the 2 n  ferromagnetic soliton 
are similar to those obtained by other methods except that we find a smaller reduction 
in the soliton creation energy since RQ is 0.75 and not 1.0. For the n ferromagnetic 
soliton in zero applied field the energy shifts become larger so that the soliton energy is 
reduced below S(20&0A)”*. This soliton has only one true bound state. Small amounts 
of planar anisotropy (which are necessary for the stability of the 2 n  ferromagnetic 
soliton) have only a small effect on the energy of the ferromagnetic solitons. 

For wp = 0 the n antiferromagnetic soliton has negative creation energy if wA/wE is 
smaller than a critical value which depends on the spin. Although inter-chain interactions 
may modify this result in real systems, we believe that it may have important con- 
sequences where the anisotropy or effective anisotropy is small. This may occur, for 
example, near to the spin-flop phase transition. The soliton creation energy is very 
strongly dependent on small amounts of planar anisotropy. It will be necessary to include 
interactions between chains in the theory before the quantitative results can be applied 
to experimental systems. 

The application of spin-wave theory here is new in that it introduces the idea that 
quantum fluctuations may change the nature of the ground state. In conventional 
applications of spin-wave theory it can be assumed that the minima of the zero-point 
energy and the classical energy occur at the same point, the quantum fluctuations in this 
sense reinforcing the classical configuration. In some of the applications discussed above, 
there is a conflict between the classical stability, which requires simply that wk(k = 
0) 5 0, and the quantum fluctuations which involve the whole of the dispersion curve. 
The ground state is the result of a compromise between the two effects, the quantum 
contribution having weight 1,’s. We would expect conflicts between the classical and 
quantum contributions to the energy to occur whenever the zero-point energy contains 
a term which is logarithmic in small amounts of added anisotropy, as in the uniaxial 
antiferromagnet. 
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